I want to talk about my investigations
into what technology means in our lives --
not just our immediate life, but in the cosmic sense,
in the kind of long history of the world
And so, I want to kind of go through my little story
One of the first things I started to investigate
was the history of the name of technology.
In the United States, there is a State of the Union address
given by every president since 1790.
And each one of those is kind of summing up the most important things
for the United States at that time.
If you search for the word "technology," it was not used until 1952.
So, technology was sort of absent from everybody's thinking until 1952,
which happened to be the year of my birth.
And obviously, technology had existed before then,
And so it was sort of an awakening of this force in our life.
I actually did research to find out the first use of the word "technology."
and it was invented by a guy who was starting a curriculum --
a course, bringing together all the kinds of arts and crafts, and industry --
and he called it "Technology."
And that's the very first use of the word.
that we're all consumed by and bothered by?
Alan Kay calls it, "Technology is anything that was invented
(Laughter)
Which is sort of the idea we normally have about what technology is:
It's not roads, or penicillin,
or factory tires; it's the new stuff.
My friend Danny Hillis says kind of a similar one,
he says, "Technology is anything that doesn't work yet."
(Laughter)
Which is, again, a sense that it's all new.
But we know that it's just not new.
and what I want to suggest is, it goes a long way back.
So, another way to think about technology, what it means,
is to imagine a world without technology.
If we were to eliminate every single bit of technology in the world today --
and I mean everything, from blades to scrapers to cloth --
we, as a species, would not live very long.
We would die by the billions, and very quickly:
the wolves would get us, we would be defenseless,
we would be unable to grow enough food or find enough food.
Even the hunter-gatherers used some elementary tools.
So, they had minimal technology,
And if we study those hunter-gatherer tribes
and the Neanderthal, which are very similar to early man,
we find out a very curious thing about this world without technology,
and this is a kind of a curve of their average age.
There are no Neanderthal fossils that are older than 40 years old
and the average age of most of these hunter-gatherer tribes is 20 to 30.
There are very few young infants, because they die -- high mortality rate --
and there's very few old people.
So the profile is sort of for your average San Francisco neighborhood:
And if you go there, you say, "Hey, everybody's really healthy."
Well, that's because they're all young.
Same thing with the hunter-gatherer tribes and early man:
you didn't live beyond the age of 30.
So it was a world without grandparents.
And grandparents are very important,
because they are the transmitter of cultural evolution and information.
Imagine a world where basically everybody was 20 to 30 years old.
You can't do very much learning in your own life,
and there's nobody to pass on what you do learn.
But at the same time, anthropologists know
that most hunter-gatherer tribes of the world,
with that very little technology,
actually did not spend a very long time gathering the food they needed:
Some anthropologists call that the original affluent society,
because they had bankers' hours, basically.
So it was possible to get enough food.
when the highs and lows and the droughts came,
then people went into starvation.
And that's why they didn't live very long.
through the very simple tools like these stone tools here --
even something as small as this --
the early bands of humans were actually able to eliminate to extinction
about 250 megafauna animals in North America
when they first arrived 10,000 years ago.
So, long before the industrial age,
we've been affecting the planet on a global scale
with just a small amount of technology.
The other thing that the early man invented was fire.
And fire was used to clear out, and again,
affected the ecology of grass and whole continents,
It enabled us to actually eat all kinds of things.
It was, in a certain sense, in a McLuhan sense,
in the sense that it was cooking food that we could not eat otherwise.
And if we didn't have fire, we actually could not live.
Our bodies have adapted to these new diets.
Our bodies have changed in the last 10,000 years.
So, with that little bit of technology,
humans went from a small band of 10,000 or so --
the same number as Neanderthals everywhere --
With the invention of language around 50,000 years ago,
the number of humans exploded,
and very quickly became the dominant species on the planet.
And they migrated into the rest of the world
until, within several tens of thousands of years,
we occupied every single watershed on the planet
and became the most dominant species,
with a very small amount of technology.
And even at that time, with the introduction of agriculture,
we started to see climate change.
So climate change is not a new thing; what's new is just the degree of it.
Even during the agricultural age, there was climate change.
So already, small amounts of technology were transforming the world.
And what this means, and where I'm going,
is that technology has become the most powerful force in the world.
All the things we see today that are changing our lives,
to the introduction of some new technology.
that is the most powerful force that has been unleashed on this planet,
that I think it's become who we are.
In fact, our humanity and everything that we think about ourselves,
Of all the animals that we've domesticated,
the most important animal has been us.
So humanity is our greatest invention,
but of course, we're not done yet.
and this is what technology is allowing us to do;
it's continually to reinvent ourselves.
It's a very, very strong force.
I call this entire thing -- us humans as our technology,
everything that we've made, gadgets in our lives --
My working definition of technology is:
anything useful that a human mind makes.
It's not just hammers and gadgets, like laptops.
And, of course, cities are ways to make things more useful to us.
While this is something that comes from our mind,
it also has its roots deeply into the cosmos.
The origins and roots of technology go back to the Big Bang,
in this way, in that they are part of this self-organizing thread
that starts at the Big Bang and goes through galaxies and stars,
And the three major phases of the early universe
was energy, when the dominant force was energy;
then the dominant force, as it cooled, became matter;
and then, with the invention of life four billion years ago,
the dominant force in our neighborhood became information.
an information process that was restructuring
So, energy and matter, Einstein showed were equivalent,
and now new sciences of quantum computing show that entropy and information
You put energy into the right kind of system,
and out comes wasted heat, entropy,
Where does this order come from?
that the self-organization trend throughout the universe is long,
and it began with things like galaxies;
they maintained their order for billions of years.
Stars are basically nuclear fission machines
that self-organize and self-sustain themselves for billions of years:
order against the extropy of the world.
And flowers and plants are the same thing, extended,
and technology is basically an extension of life.
One trend that we notice in all those things
is that the amount of energy per gram per second
The amount of energy is increasing through this little sequence.
And the amount of energy per gram per second that flows through life
is actually greater than a star --
because of the star's long lifespan,
the energy density in life is actually higher than a star.
And the energy density that we see in the greatest amount
There is more energy flowing through, per gram per second,
than anything that we have any other experience with.
is that if you want to see where technology is going,
and we say, "Well, it's going to become more energy-dense,
And so what I've done is, I've taken the same kinds of things
and looked at other aspects of evolutionary life and say,
"What are the general trends in evolutionary life?"
And there are things moving towards greater complexity,
moving towards greater diversity, moving towards greater specialization,
sentience, ubiquity, and most important, evolvability.
Those very same things are also present in technology.
That's where technology is going.
In fact, technology is accelerating all the aspects of life.
And we can see that happening;
just as there's diversity in life, there's more diversity in things we make.
Things in life start off being general cells,
you have tissue cells, muscle, brain cells.
The same thing happens with, say, a hammer,
which is general at first and becomes more specific.
So I would like to say that while there are six kingdoms of life,
we can think of technology basically as a seventh kingdom of life.
It's a branching off from the human form.
But technology has its own agenda, like anything, like life itself.
For instance, right now, three-quarters of the energy that we use
is actually used to feed the technium itself.
In transportation, it's not to move us;
it's to move the stuff we make or buy.
I use the word "want." Technology wants.
This is a robot that wants to plug itself in to get more power.
A bacterium, which has no consciousness at all,
It has an urge, and technology has an urge.
At the same time, it wants to give us things,
and what it gives us is basically progress.
You can take all kinds of curves, and they're all pointing up.
There's really no dispute about progress,
if we discount the cost of that.
And that's the thing that bothers most people,
is that progress is really real, but we wonder and question:
What are the environmental costs of it?
I did a survey of the number of species of artifacts in my house,
Other people have come up with 10,000.
When King Henry of England died,
he had 18,000 things in his house,
but that was the entire wealth of England, so ...
(Laughter)
And with that entire wealth of England,
King Henry could not buy any antibiotics,
he could not buy refrigeration,
he could not buy a trip of a thousand miles,
whereas this rickshaw wallah in India could save up and buy antibiotics
and he could buy refrigeration.
He could buy things that King Henry, in all his wealth, could never buy.
That's what progress is about.
So, technology is selfish; technology is generous.
That conflict, that tension, will be with us forever:
sometimes it wants to do what it wants to do,
and sometimes it's going to do things for us.
We have confusion about what we should think
Right now the default position when a new technology comes along,
is people talk about the precautionary principle,
which is very common in Europe,
which says, basically, "Don't do anything.
When you meet a new technology, stop,
until it can be proven that it does no harm."
I think that really leads nowhere.
But a better way is what I call the proactionary principle,
which is, you engage with technology.
You obviously do what the precautionary principle suggests,
And when it diverts from what you want,
we prioritize risk, we evaluate not just the new stuff,
We fix it; but most importantly,
Nuclear energy, fission, is a really bad idea for bombs.
But it may be a pretty good idea relocated into sustainable nuclear energy
for electricity, instead of burning coal.
is not no ideas, it's not to stop thinking.
like, say, a tungsten lightbulb --
So, better ideas is really always the response
it's basically better technology.
And actually, in a certain sense, technology is a kind of a method
if you can think about it that way.
So, maybe spraying DDT on crops is a really bad idea.
But DDT sprayed on local homes --
there's nothing better to eliminate malaria,
besides insect DDT-impregnated mosquito nets.
But that's a really good idea; that's a good job for technology.
So our job as humans is to parent our mind children,
And so, every technology is sort of a creative force
That's actually my son, right here.
(Laughter)
There are no bad technologies,
just as there are no bad children.
We don't say children are neutral; children are positive.
We just have to find them the right place.
And so, what technology gives us over the long term --
over this sort of extended evolution from the beginning of time,
through the invention of the plants and animals,
and the evolution of life, the evolution of brains --
what that is constantly giving us is increasing differences:
It's increasing diversity, it's increasing options,
it's increasing choices, opportunities, possibilities and freedoms.
That's what we get from technology all the time.
That's why people leave villages and go into cities --
because they are always gravitating towards increased choices
And we are aware of the price;
we pay a price for that, but we're aware of it,
and generally, we will pay the price for increased freedoms,
Even technology wants clean water.
Is technology diametrically opposed to nature?
Because technology is an extension of life,
it's in parallel and aligned with the same things
So that I think technology loves biology,
Great movement starting billions of years ago
is moving through us and it continues to go,
and our choice, so to speak, in technology,
is really to align ourselves with this force
So, technology is more than just the stuff in your pocket;
it's more than just things that people invent.
It's actually part of a very long story -- a great story --
that began billions of years ago.
It's moving through us, this self-organization,
and we're extending and accelerating it,
and we can be part of it by aligning the technology that we make with it.
And I really appreciate your attention today.
(Applause)